Exercise 45

A warm can of soda is placed in a cold refrigerator. Sketch the graph of the temperature of the soda as a function of time. Is the initial rate of change of temperature greater or less than the rate of change after an hour?

Solution

According to Newton's law of cooling, the rate that the can's temperature changes is proportional to the temperature difference of the can and the surrounding environment.

$$
\frac{d T}{d t} \propto\left(T-T_{a}\right)
$$

Here T_{a} is the ambient temperature. Change this to an equation by introducing a proportionality constant h.

$$
\frac{d T}{d t}=-h\left(T-T_{a}\right)
$$

The negative sign is included so that when the can is warmer $d T / d t$ is negative and vice-versa. Solving this equation yields

$$
T(t)=T_{a}+\left(T_{i}-T_{a}\right) e^{-h t}
$$

where T_{i} is the can's initial temperature. If the can's temperature is 100 and the ambient temperature is 50 , for example, then the function reduces to

$$
T(t)=50+50 e^{-h t}
$$

A graph of this function is shown below with $h=1$ to illustrate the behavior.

The initial rate of change of temperature is less than the rate of change after an hour.

$$
\frac{d T}{d t}(0)<\frac{d T}{d t}(1)
$$

